• GitHub
  • Home
  • People
  • Research
  • Publications
  • Courses
  • News
  • Contact
  • Internal
UT Shield

Intelligent Environments Laboratory

The University of Texas at Austin
  • Home
  • People
    • Prof. Zoltan Nagy, PhD
    • June Young Park
    • José Ramón Vázquez-Canteli
    • Megan K. McHugh, MSE
    • Ayşegül Demir Dilsiz
    • Hagen Fritz
  • Research
  • Publications
  • GitHub
  • Courses
  • News
  • Contact

November 23, 2018, Filed Under: Past Projects II

Non-Smooth Dynamics Modeling of Wireless Resonant Magnetic Microactuators

In this project, we considered the world’s first really untethered microrobots that are driven by oscillating magnetic fields. The oscillations are converted into mechanical energy and rectified using a spring-mass impact system with friction, leading to stick-slip motion. I model this system using non-smooth multi-body dynamics and can explain several unintuitive behaviors that are experimentally not explicable because of the nature of the devices.

Publications

Z. Nagy, D. Frutiger, R.I. Leine, C. Glocker, and B. J. Nelson, Modeling and analysis of wireless resonant magnetic microactuators, in Proc. IEEE Int. Conference on Robotics and Automation (ICRA), 2010, Anchorage, AK, USA
doi: 10.1109/ROBOT.2010.5509260

Z. Nagy, R.I. Leine, D.R. Frutiger, C.Glocker, and B. J. Nelson, Modeling the Motion of Microrobots on Surfaces Using Non-Smooth Multibody Dynamics, IEEE Transactions on Robotics, Vol.28, No.5, pp.1058-1068, October 2012
doi: 10.1109/TRO.2012.2199010

Research Highlight

Whole Communities—Whole Health

CHANGING THE WAY SCIENCE HELPS SOCIETY THRIVE IS OUR GRAND CHALLENGE Traditional research studies take “snapshots” of people’s lives at different Read more 

About Us

The Intelligent Environments Laboratory (IEL), led by Prof. Zoltán Nagy, is an interdisciplinary research group within the Building Energy & Environments (BEE) and Sustainable Systems (SuS) Programs of the Department of Civil, Architectural and Environmental Engineering (CAEE) in the Cockrell School of Engineering of the University of Texas at Austin.

The aim of our research is to rethink the built environment and define Smart Buildings and Cities as spaces that adapt to their occupants and reduce their energy consumption.

We combine data science with building science and apply machine learning to the building and urban scale

Take a look at our projects !

Tags

air handling unit Annex 79 architecture artificial neural network Bluetooth city learn Community engaged research earthquakes environmental monitoring fault detection and diagnostics HVAC integrated design intelligent energy management Lighting Control machine learning Megan McHugh multi-agent systems Occupancy Occupant Centered Control Reinforcement Learning Review Smart Building smart city teaching Thermal Comfort
Tweets by Z0ltanNagy

Research

  • All Projects

UT Energy App – Privacy Policy

Fault detection and diagnostics of air handling units using machine learning and expert rule-sets

Reinforcement Learning in the Built Environment

Reinforcement learning for urban energy systems & demand response

Multi-Agent Reinforcement Learning for demand response & building coordination

IEA-EBC Annex 79: Occupant Centric Design and Operation of Buildings

People

  • Prof. Zoltan Nagy, PhD
  • June Young Park
  • José Ramón Vázquez-Canteli
  • Megan K. McHugh, MSE

Tags

air handling unit Annex 79 architecture artificial neural network Bluetooth city learn Community engaged research earthquakes environmental monitoring fault detection and diagnostics HVAC integrated design intelligent energy management Lighting Control machine learning Megan McHugh multi-agent systems Occupancy Occupant Centered Control Reinforcement Learning Review Smart Building smart city teaching Thermal Comfort
ITS

301 E Dean Keeton St
Austin, TX 78712
512-555-5555
nagy@utexas.edu

UT Home | Emergency Information | Site Policies | Web Accessibility | Web Privacy | Adobe Reader

© The University of Texas at Austin 2022

  • All Projects