• GitHub
  • Home
  • People
  • Research
  • Publications
  • Courses
  • News
  • Contact
  • Internal
UT Shield

Intelligent Environments Laboratory

The University of Texas at Austin
  • Home
  • People
    • Prof. Zoltan Nagy, PhD
    • June Young Park
    • José Ramón Vázquez-Canteli
    • Megan K. McHugh, MSE
    • Ayşegül Demir Dilsiz
    • Hagen Fritz
  • Research
  • Publications
  • GitHub
  • Courses
  • News
  • Contact

December 2, 2018, Filed Under: Publication

Fusing TensorFlow with CitySim for Smart Cities

The journal Sustainable Cities and Society has published our paper Fusing TensorFlow with building energy simulation for intelligent energy management in smart cities led by our awesome PhD student Jose. We have developed CitySim, a framework to study multi-agent reinforcement learning using state-of-the art machine learning tools (TensorFlow) integrated with urban energy simulation (CitySim).

Vázquez-Canteli, J.,  Ulyanin, S., Kämpf, J., and Nagy, Z. “Fusing TensorFlow with building energy simulation for intelligent energy management in smart cities” Sustainable Cities and Society, 2019

https://doi.org/10.1016/j.scs.2018.11.021

Read more about our research here.

Highlights

  • Simulation environment for intelligent energy management in smart cities.
  • Fused urban energy simulator CitySim with machine learning library TensorFlow.
  • Applied deep reinforcement learning controller in two case studies.
  • Controllers first learn off-line from simple controller, then improve on-line.

Abstract

Buildings account for 35% of the global final energy demand. Efficiency improvements and advanced control strategies have a significant impact in the reduction of energy costs and CO2 emissions. Building energy simulation is widely used to help planners, contractors, and building owners analyse diverse options regarding the planning and management of energy consumption in buildings. Furthermore, recent advances in data processing and computing have led to the development of sophisticated machine learning algorithms that can learn from large datasets, e.g., sensor data from buildings, and use them to develop building-specific adaptive and automatic energy controllers. Control algorithms, such as deep reinforcement learning can tune themselves, are model-free, and economical to implement. In this paper, we introduce an integrated simulation environment that combines CitySim, a fast building energy simulator, and TensorFlow, a platform for efficient implementation of advanced machine learning algorithms. The integration is achieved via Keras—an API for TensorFlow—and a set of text and csv files for data transfer between the applications. This new environment will allow researchers to investigate novel learning control algorithms, and demonstrate their robustness and potential for diverse applications in the built environment. We present two case studies for energy savings and demand response, respectively.

Research Highlight

Reinforcement learning for urban energy systems & demand response

Demand response, or demand-side management, improves grid stability by increasing demand flexibility, and shifts peak demand towards periods of peak Read more 

About Us

The Intelligent Environments Laboratory (IEL), led by Prof. Zoltán Nagy, is an interdisciplinary research group within the Building Energy & Environments (BEE) and Sustainable Systems (SuS) Programs of the Department of Civil, Architectural and Environmental Engineering (CAEE) in the Cockrell School of Engineering of the University of Texas at Austin.

The aim of our research is to rethink the built environment and define Smart Buildings and Cities as spaces that adapt to their occupants and reduce their energy consumption.

We combine data science with building science and apply machine learning to the building and urban scale

Take a look at our projects !

Tags

air handling unit Annex 79 architecture artificial neural network Bluetooth city learn Community engaged research earthquakes environmental monitoring fault detection and diagnostics HVAC integrated design intelligent energy management Lighting Control machine learning Megan McHugh multi-agent systems Occupancy Occupant Centered Control Reinforcement Learning Review Smart Building smart city teaching Thermal Comfort
Tweets by Z0ltanNagy

Research

  • All Projects

UT Energy App – Privacy Policy

Fault detection and diagnostics of air handling units using machine learning and expert rule-sets

Reinforcement Learning in the Built Environment

Reinforcement learning for urban energy systems & demand response

Multi-Agent Reinforcement Learning for demand response & building coordination

IEA-EBC Annex 79: Occupant Centric Design and Operation of Buildings

People

  • Prof. Zoltan Nagy, PhD
  • June Young Park
  • José Ramón Vázquez-Canteli
  • Megan K. McHugh, MSE

Tags

air handling unit Annex 79 architecture artificial neural network Bluetooth city learn Community engaged research earthquakes environmental monitoring fault detection and diagnostics HVAC integrated design intelligent energy management Lighting Control machine learning Megan McHugh multi-agent systems Occupancy Occupant Centered Control Reinforcement Learning Review Smart Building smart city teaching Thermal Comfort
ITS

301 E Dean Keeton St
Austin, TX 78712
512-555-5555
nagy@utexas.edu

UT Home | Emergency Information | Site Policies | Web Accessibility | Web Privacy | Adobe Reader

© The University of Texas at Austin 2021

  • All Projects