• GitHub
  • Home
  • People
  • Research
  • Publications
  • Courses
  • News
  • Contact
  • Internal
UT Shield

Intelligent Environments Laboratory

The University of Texas at Austin
  • Home
  • People
    • Prof. Zoltan Nagy, PhD
    • June Young Park
    • José Ramón Vázquez-Canteli
    • Megan K. McHugh, MSE
    • Ayşegül Demir Dilsiz
    • Hagen Fritz
  • Research
  • Publications
  • GitHub
  • Courses
  • News
  • Contact

November 24, 2018, Filed Under: Research

Multi-Agent Reinforcement Learning for demand response & building coordination

We have introduced a new simulation environment that is the result of merging CitySim, a building energy simulator, and TensorFlow, a powerful machine learning library for deep learning. This new simulation environment has the potential for developing building energy scenarios in which machine learning algorithms, such as deep reinforcement learning, are applied to of the major problems and opportunities modern cities face, e.g., the increased demand for heating and cooling due to increasing populations [1].

This simulation environment allows to study model-free and self-tuning control algorithms, such as deep reinforcement learning (DRL) when integrating distributed renewable energy sources and storage devices into buildings. DRL can learn on-line and off-line from historical sensor data, and it can adapt to diverse changes in the system it controls on both the demand and the supply side. Its off-line learning feature allows it to be safely implemented with a back-up controller and operational constraints.

[1] Vázquez-Canteli, J.R., Ulyanin, S., Kämpf J., and Nagy, Z., “Fusing TensorFlow with building energy simulation for intelligent energy management in smart cities”, Sustainable Cities and Society, 2018.

Research Highlight

Fault detection and diagnostics of air handling units using machine learning and expert rule-sets

To reduce HVAC energy inefficiencies, fault detection and diagnostics (FDD) has become a growing field of interest. In particular, air handling units Read more 

About Us

The Intelligent Environments Laboratory (IEL), led by Prof. Zoltán Nagy, is an interdisciplinary research group within the Building Energy & Environments (BEE) and Sustainable Systems (SuS) Programs of the Department of Civil, Architectural and Environmental Engineering (CAEE) in the Cockrell School of Engineering of the University of Texas at Austin.

The aim of our research is to rethink the built environment and define Smart Buildings and Cities as spaces that adapt to their occupants and reduce their energy consumption.

We combine data science with building science and apply machine learning to the building and urban scale

Take a look at our projects !

Tags

air handling unit Annex 79 architecture artificial neural network Bluetooth city learn Community engaged research earthquakes environmental monitoring fault detection and diagnostics HVAC integrated design intelligent energy management Lighting Control machine learning Megan McHugh multi-agent systems Occupancy Occupant Centered Control Reinforcement Learning Review Smart Building smart city teaching Thermal Comfort
Tweets by Z0ltanNagy

Research

  • All Projects

UT Energy App – Privacy Policy

Fault detection and diagnostics of air handling units using machine learning and expert rule-sets

Reinforcement Learning in the Built Environment

Reinforcement learning for urban energy systems & demand response

Multi-Agent Reinforcement Learning for demand response & building coordination

IEA-EBC Annex 79: Occupant Centric Design and Operation of Buildings

People

  • Prof. Zoltan Nagy, PhD
  • June Young Park
  • José Ramón Vázquez-Canteli
  • Megan K. McHugh, MSE

Tags

air handling unit Annex 79 architecture artificial neural network Bluetooth city learn Community engaged research earthquakes environmental monitoring fault detection and diagnostics HVAC integrated design intelligent energy management Lighting Control machine learning Megan McHugh multi-agent systems Occupancy Occupant Centered Control Reinforcement Learning Review Smart Building smart city teaching Thermal Comfort
ITS

301 E Dean Keeton St
Austin, TX 78712
512-555-5555
nagy@utexas.edu

UT Home | Emergency Information | Site Policies | Web Accessibility | Web Privacy | Adobe Reader

© The University of Texas at Austin 2021

  • All Projects